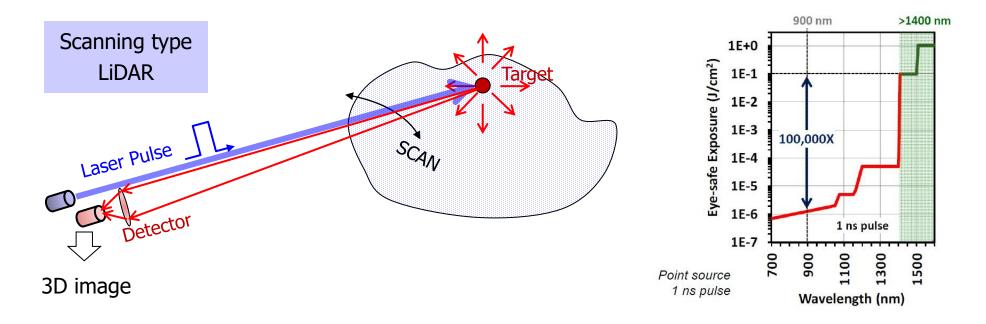
Design and Fabrication of Solid-State Photomultiplier(SSPM) composed of multi-pixel InGaAs SPAD

June 15, 2022

C.Y. Park, S.H. Baek, E.J. Seo, S.H. Kim, J.H. Kim, B.R. Jeon, S.C. Yang

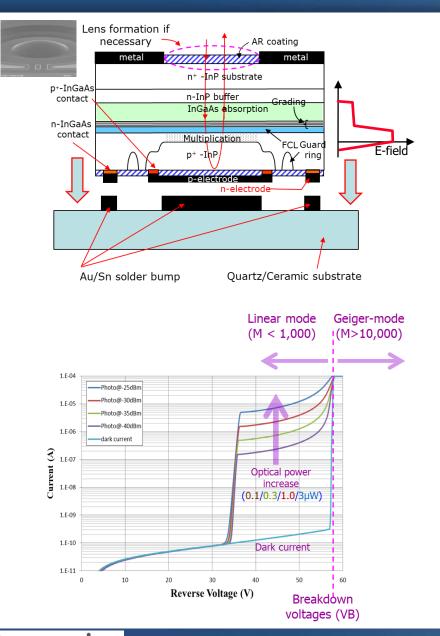
WOORIRO Co., Ltd.


International SPAD Sensor Workshop 2022

$\sqrt{}$ Background

- $\sqrt{}$ InGaAs SPAD as a pixel element
- $\sqrt{}$ SPAD-based SSPM design and fabrication
- $\sqrt{}$ Test results of 64-pixel SSPM
- $\sqrt{203}$ -pixel SSPM with honeycomb arrangement of pixels
- \checkmark Summary and future works

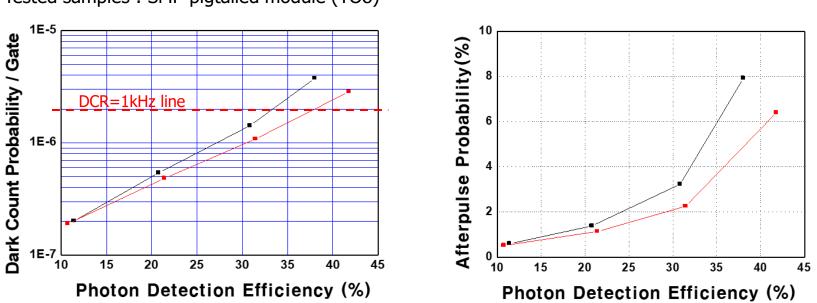
Background : Why InGaAs-based SPAD?


- $\sqrt{}$ The scattered laser beam from target returns to detector to measure intensity and distance by TOF
- $\sqrt{10}$ In this configuration, the laser pulse output and detector's sensitivity (detectable number of photons) determine the measurable distance.
- $\sqrt{}$ Because SPADs internally amplify tens to hundreds of thousands of times, they can detect single photon levels. Thus, long distance image available by using SPAD pixel.
- ✓ Another point to point out is that InGaAs(P)-SPAD is the best alternative to long-range LiDAR at wavelengths above 1400 nm. The reason is that it still meets the eye-safe condition even at the high power of that wavelength.

- √ Background
- $\sqrt{}$ InGaAs SPAD as a pixel element
- $\sqrt{}$ SPAD-based SSPM design and fabrication
- $\sqrt{}$ Test results of 64-pixel SSPM
- $\sqrt{203}$ -pixel SSPM with honeycomb arrangement of pixels
- $\sqrt{}$ Summary and future works

InGaAs SPAD(Single Photon Avalanche Diode)

WOOLI

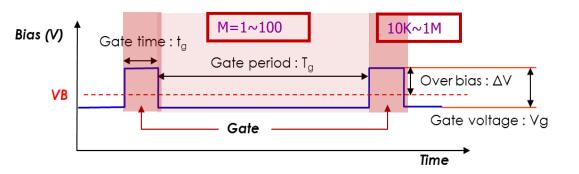

Features of WOORIRO SPAD

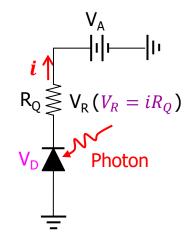
- ✓ Hi-Lo based FGR structure was used to eliminate possibility of tunneling at the maximum field region.
- \checkmark Floating Guard Ring was adopted to reduce DCR noise caused by edge breakdown.
- $\sqrt{}$ For high QE, backside illumination structure was used
- $\checkmark~$ And InP-backside lens was formed directly (SSPM : to increase FF)
- $\sqrt{-}$ Very low dark current @RT & 98% of VB
- $\sqrt{}$ SPDE(Single Photon Detection Efficiency) > 30% @below 1kHz DCR
- $\sqrt{}$ DCR (Dark Count Rate) < 1kHz @ 30% SPDE
- √ For high-speed application of SPAD, DA-SPAD has been proposed and realized at 1GHz gate frequency.
 [C.W. Park et al., Optics express, vol.27, 18201(2019)]

InGaAs SPAD performance

TECT CONDITION

- $\checkmark\,$ Gate repetition rate : 10MHz / 2ns / 6.6V
- $\sqrt{}$ Optical Input : 150ps, 0.1photon/pulse, 100kHz
- $\sqrt{}$ Chip temperature : -40°C
- $\sqrt{}$ Conventional gating technique
- $\sqrt{}$ Tested samples : SMF-pigtailed module (TO8)

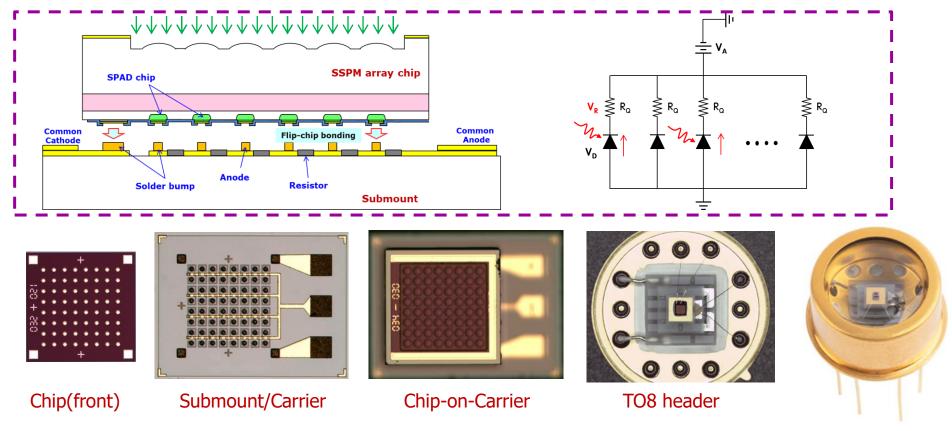

- $\sqrt{-}$ Very Low DCP or DCR noise at high detection efficiency.
- $\checkmark~$ Based on SPAD structure of good performance, InGaAs-SSPM chip has been designed and fabricated.



1) Active quenching (Gated mode) : Used for QKD

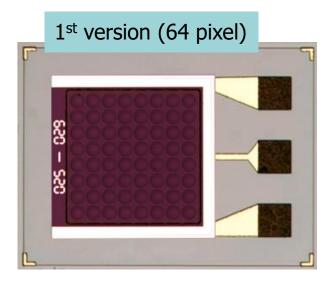
- ✓ Gain control is made periodically. [10,000 ~ 1,000,000 ↔ 1 ~ 100]
- $\checkmark~$ SPAD only is used without resistor.
- √ This quenching method is used for QKD (Single photon incidents on SPAD periodically)
- 2) Passive quenching (Negative Feedback : NFAD)
- \sqrt{A} A series resistor(R_Q) is used for negative feedback.
- $\sqrt{1}$ A large current (*i*) is generated by multiplication of millions of times
 - \rightarrow bias drop by V_R ($V_R = iR_Q$).
 - \rightarrow bias V_D in junction would be reduced from V_A to $V_A iR_Q$.
- \checkmark $\,$ This bias drop is recovered when current is reduced \Rightarrow Ready-state
- $\sqrt{}$ This method is suitable to use for non-periodic photon incidence such as photon counting or laser range-finding(LRF).

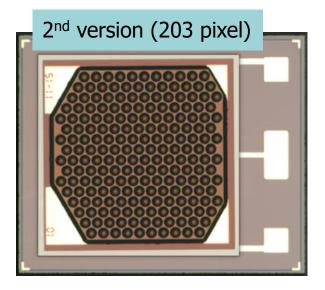
Long-range LRF, Sensor, etc.



- √ Background
- $\sqrt{}$ InGaAs SPAD as a pixel element
- $\sqrt{}$ SPAD-based SSPM design and fabrication
- $\sqrt{}$ Test results of 64-pixel SSPM
- $\sqrt{203}$ -pixel SSPM with honeycomb arrangement of pixels
- \checkmark Summary and future works

SPAD-based SSPM design consideration

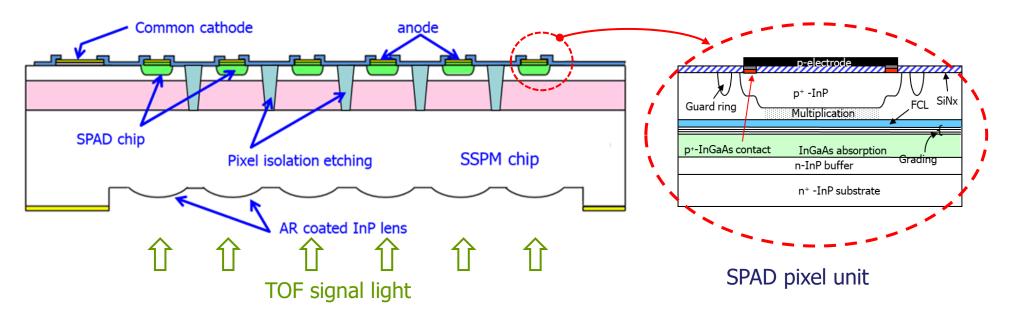

- $\sqrt{}$ SSPM(Solid-State Photo-Multiplier) : is composed of multi NFAD pixels.
- $\sqrt{}$ Backside lens was formed on substrate to increase FF(Fill Factor).
- \checkmark $\,$ Each pixel has a corresponding quenching resistor.
- \checkmark The current from each pixel is summed.
- $\sqrt{}$ Some pixels experience an avalanche event, but adjacent pixels that do not have an avalanche event stay on standby. These pixels act quickly when a photon is incident on that pixel.



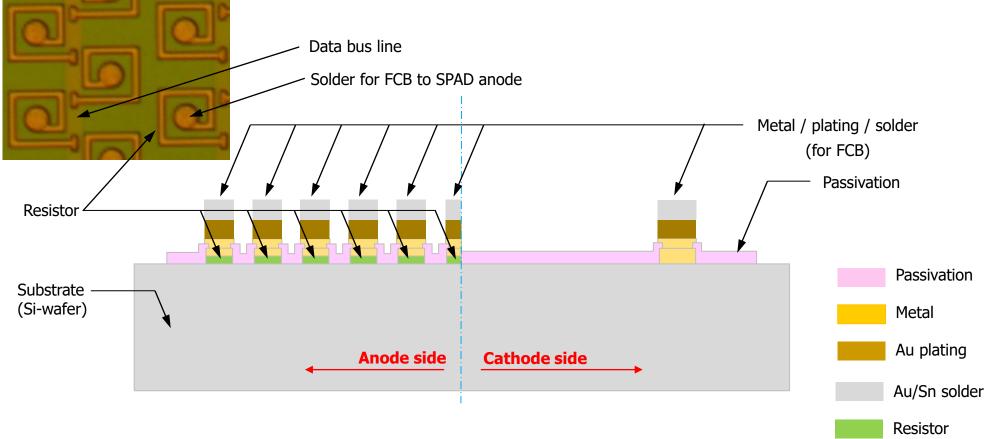
SPAD-based SSPM design consideration

- $\sqrt{WSSPM(W: Wooriro)}$ uses InGaAs as its absorption layer and InP as multiplication layer.
- $\sqrt{}$ WSSPM uses hundreds of SPAD and the corresponding resistor chips as micro-pixel elements.
- $\sqrt{}$ WSSPM employs isolation etching to reduce crosstalk among pixel elements.
- $\sqrt{}$ WSSPM increase FF(Fill Factor) by forming the backside InP-lens directly on the back InP substrate.
- $\sqrt{}$ Since the active size can be reduced due to the BS-lens, the performance such as PDE and Afterpulse of the pixel SPAD can be improved.

- Pixel pitch : 51 µm
- Lens diameter : 48 µm
- FF \cong 69% (100% light collection in the lens)

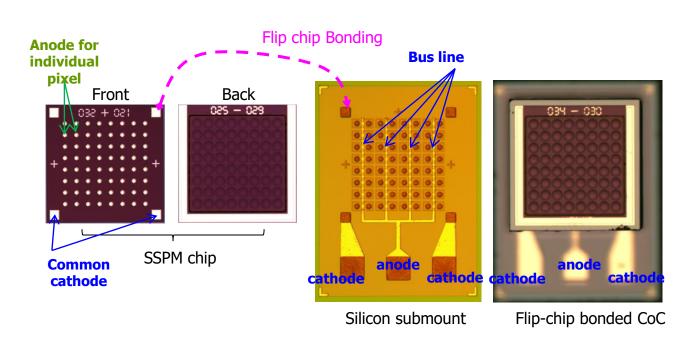


- Honeycomb structure [Regular Hexagon unit cell]
- Lens diameter : 48 µm
- FF \cong 80% (100% light collection in the lens)

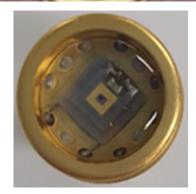


SPAD-based SSPM design consideration

- $\sqrt{}$ All the pixel chips have their own anode metal and mirror metal, respectively.
- $\sqrt{}$ Except for the anode and cathode contact metals, all areas on the front side of the chip are protected with SiNx.
- \checkmark Every SPAD chip has its own FGR.
- \checkmark All SPAD chips have absorption regions separated from each other by separation channels formed by wet chemical treatment after dry etching.
- $\sqrt{}$ Isolation-etched surface is passivated with SiNx thin film and the etched area is filled with polyimide.



- $\sqrt{}$ The resistor is made of polysilicon and is formed on p-Si with high resistance.
- $\sqrt{}$ The resistivity is controlled by boron implantation.
- $\sqrt{}$ There exists SiO2 between Si-Substrate and polysilicon resistor.
- $\sqrt{}$ The magnitude of resistor can be changed by changing the width or length of the line. 2M Ω was best in our case.

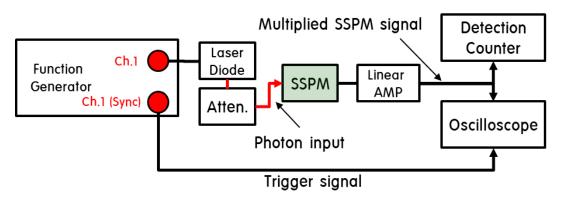


SSPM CoC and Module fabrication (64-pixel)

- $\sqrt{}$ The role of bus line is to sum the signals and to supply common bias(or GND) to anodes of each pixel.
- $\sqrt{}$ Flip-chip bonding of SSPM chip and submount is carried out.
- $\sqrt{}$ The CoC is mounted on TO8 header with 3-stage TEC and thermistor.
- $\sqrt{}$ Window cap sealing by resistance welding for hermetic and chip protection.

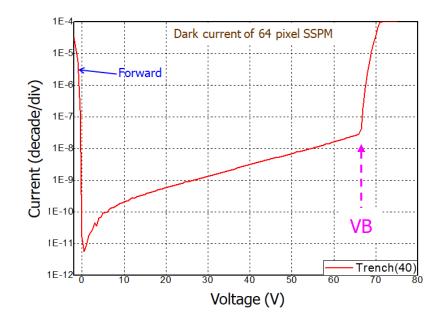
12-pin TO8 stem (6-leads are available)

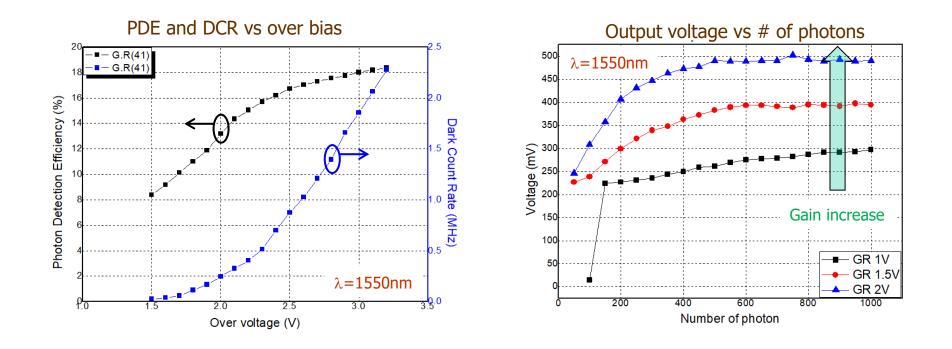
SSPM Chip



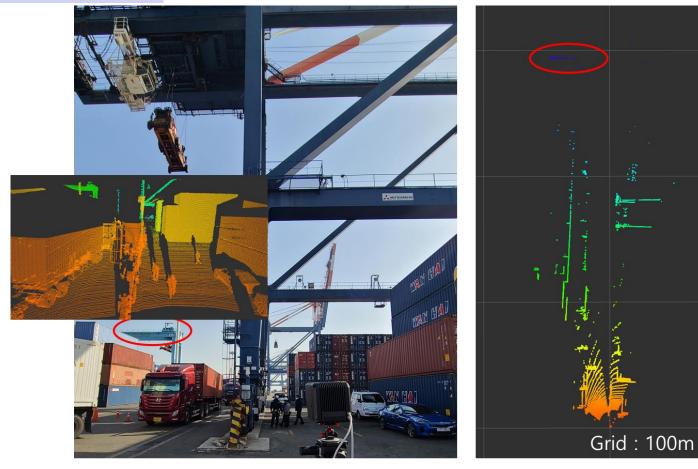
- √ Background
- $\sqrt{}$ InGaAs SPAD as a pixel element
- $\sqrt{}$ SPAD-based SSPM design and fabrication
- $\sqrt{}$ Test results of 64-pixel SSPM
- $\sqrt{203}$ -pixel SSPM with honeycomb arrangement of pixels
- \checkmark Summary and future works

64-pixel SSPM Test


Block diagram of test set-up


Test equipment

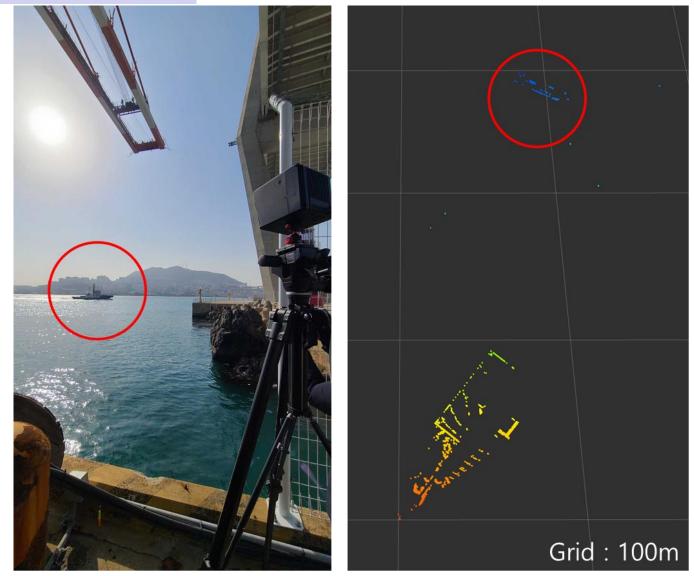
- $\sqrt{}$ Photon incidence through 62.5µm MMF without any beam steering.
- √ Overbias(V_{apply} VB) was controlled 2.0 or 2.5V for the performance optimization.
- \checkmark Breakdown voltage was defined by the curvature of dark current.
- $\sqrt{}$ Averaged dark current of unit pixel : ~ 20nA/64pixels ≅ 300pA at RT



- $\checkmark~$ DCR is not bad even at 18% of PDE.
- $\sqrt{}$ The photon number resolving range is small \Rightarrow because # of pixel is small
- ✓ New design ⇒ Increase # of pixels / Increases the distance between active region and trench mesa surface / Decrease active size / Increase FF (honeycomb arrangement of pixel)

Point cloud 3D image (64-pixel SSPM)

(Outdoor Application)

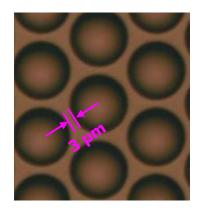


- $\checkmark\,$ Point cloud 3D images were generated by SOS Lab (LiDAR-related start-up company) using 64-pixel SSPM.
- $\sqrt{}$ A 200-pixels WSSPM will show better performance, but 3D point cloud tests were not done yet.

Point cloud 3D image (64 pixel SSPM)

(Outdoor Application)

Point cloud 3D images were generated by SOS Lab using 64-pixel SSPM



International SPAD Sensor Workshop 2022

- √ Background
- $\sqrt{}$ InGaAs SPAD as a pixel element
- $\sqrt{}$ SPAD-based SSPM design and fabrication
- $\sqrt{}$ Test results of 64-pixel SSPM
- $\sqrt{203}$ -pixel SSPM with honeycomb arrangement of pixels
- $\sqrt{}$ Summary and future works

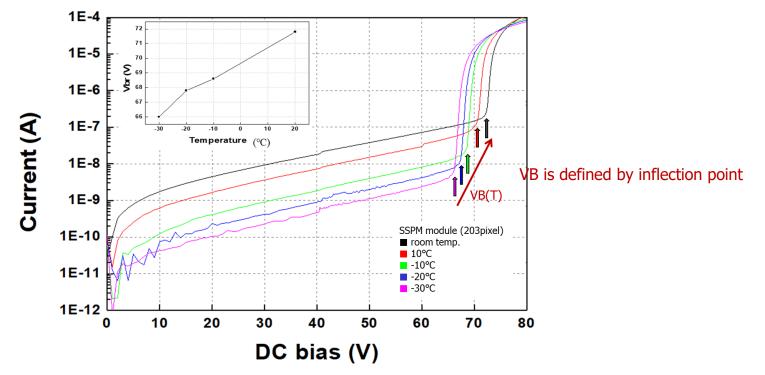
- $\sqrt{}$ 64 pixels \Rightarrow 203 pixels of NFAD.
- \checkmark Honeycomb arrangement of pixels.
- $\sqrt{}$ FF of the new SSPM is increased from 69% to 80% by lens arrangement in honeycomb structure

Backside lens image

Chip front image

Isolation etch (InP & InGaAs)

Metal for Cathode & reflection FGR is formed here


FIG. Honeycomb arrangement of SSPM Pixels

Chip front image

SPAD-based 203 pixel : Dark current

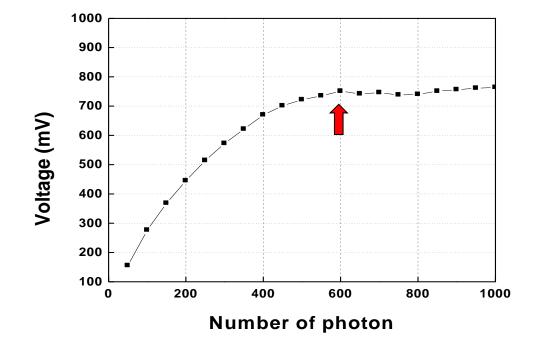
- $\sqrt{}$ At voltages above VB, the total resistance is ~ $2M\Omega/200 \approx 10k\Omega$ if individual resistors have $2M\Omega$.
- $\sqrt{}$ Temp. coefficient was measured ~ 117 mV/°C

Vbr [V]				Dark current [A] @0.9Vbr				Temp. coeff.
RT	-10°C	-20°C	-30°C	RT	-10°C	-20°C	-30°C	[V/°C]
71.8	68.6	67.8	66	9.77E-8	9.33E-9	4.48E-9	2.24E-9	0.117
				480 pA	46 pA	22 pA	11 pA	

 \Rightarrow I_D(203-pixel)

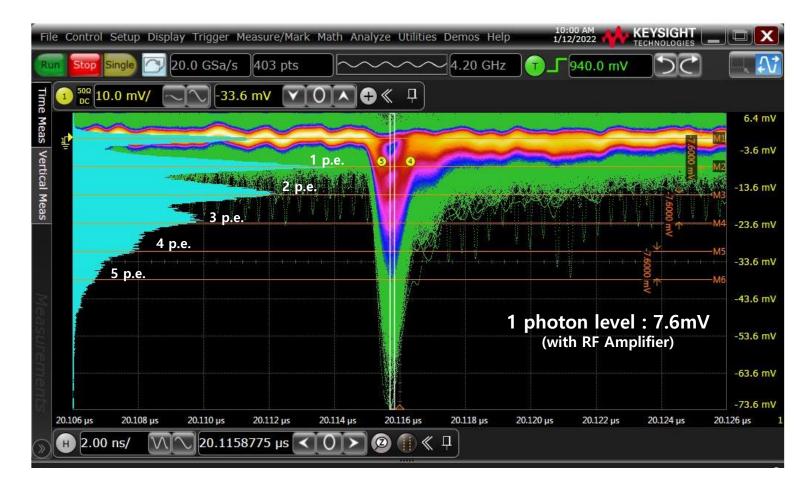
 \Rightarrow I_D(single pixel-Average)

SPAD-based 203 pixel : PDE and DCR


- $\sqrt{}$ To measure PDE and DCR, the magnitude of the output level(1-p.e.) for single photon is measured. For ex., sample #6 has 74 mV of 1-p.e. level.
- $\sqrt{}$ Threshold voltage for discrimination is taken as a half of 1-p.e. In this case V_{th} =37 mV
- $\sqrt{}$ DCR is counted without photon incidence.
- $\sqrt{}$ PDE is measured and calculated under photon incidence. PDE ~ 25.6% @17.7MHz of DCR

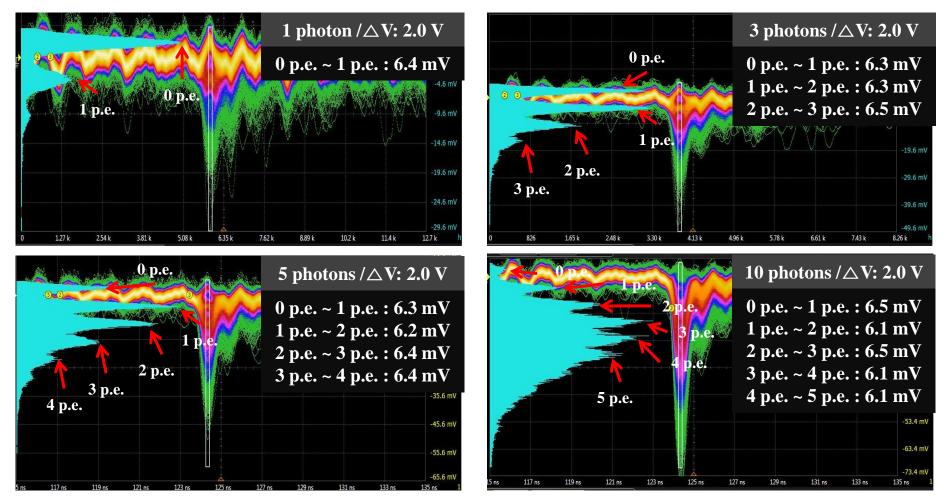
Sample #	TEC Temp. [°C]	V _{bias} [V]	Number of Photon	1 p.e. Level [mV]	PDE[%]	DCR*[MHz] (Threshold Level 0.5p.e)
6		68.7	7.8	64	18.7	5.5
		69.2	7.8	74	25.6	17.7
14	-20	68.67	15.9	46	10.8	9.5
		69.66	7.8	70	16.9	10
		70.26	6.98	70	23.1	11

Photon number resolving result of 203-pixel SSPM



- \checkmark The maximum number of photons that can be counted is 600 for a 203-pixel SSPM.
- $\sqrt{}$ We can say that as a photon number resolver, the linearity improves as the number of pixels increases.

Optical Input : 280ps / 100kHz / 5 photon Over bias : 2.5V


TEC surface temperature : -20°C

Photon number resolving performance of 203 pixels SSPM

Optical Input : 280ps & 100kHz / Over bias : 2.0 V / TEC surface temperature : -20°C

- 1. SSPM can count photon number
- 2. The amplitude of SSPM output increases if # of incident photons increase.
- 3. Can obtain intensity information from analysis of cumulative statistics.

International SPAD Sensor Workshop 2022

Summary

- $\checkmark\,$ InGaAs SPAD-based SSPMs with excellent performance were successfully fabricated.
- $\sqrt{}$ SSPM is composed of InGaAs-SPAD chip array and resistor chip array fabricated on Si-substrate.
- $\sqrt{10}$ The 2nd ver. of SSPM(203 pixels) showed 25.6% of PDE @ 17.7 MHz DCR.
- $\sqrt{-}$ The 2nd ver. of SSPM was not applied to 3D LiDAR Rx, yet.
- \checkmark A 3D point cloud image of an object 300 meters away was successfully obtained by using the 1st ver. of SSPM(64-pixel).

Further Works

- $\sqrt{}$ More compact and smaller pixel to optimize PDE and DCR.
- $\sqrt{}$ Reliability study and failure analysis.

This work was supported by the Technology Innovation Program funded By MOTIE, Korea. Thank you very much for your attention

